Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Precedence:
and2 > if3 > true
and2 > false > true
or2 > if3 > true
implies2 > if3 > true
=2 > not1 > if3 > true
=2 > not1 > false > true
Status:
true: multiset
and2: multiset
if3: multiset
false: multiset
implies2: multiset
or2: multiset
=2: multiset
not1: multiset